Senin, 03 Desember 2012

SISTEM RANGKA


Sistem rangka adalah suatu sistem organ yang memberikan dukungan fisik pada makhluk hidup. Sistem rangka umumnya dibagi menjadi tiga tipe: eksternal, internal, dan basis cairan (rangka hidrostatik), walaupun sistem rangka hidrostatik dapat pula dikelompokkan secara terpisah dari dua jenis lainnya karena tidak adanya struktur penunjang. Rangka manusia dibentuk dari tulang tunggal atau gabungan (seperti tengkorak) yang ditunjang oleh struktur lain seperti ligamen, tendon, otot, dan organ lainnya. Rata-rata manusia dewasa memiliki 206 tulang, walaupun jumlah ini dapat bervariasi antara individu.

Rangka tubuh manusia dikelompokkan atas dua bagian yaitu:
A. Skeleton aksial

Terdiri atas sekelompok tulang yang menyusun poros tubuh dan memberikan dukungan dan perlindungan pada organ di kepala, leher dan badan.

Macam-macam skeleton aksial yaitu:

1. Tulang tengkorak bagian kepala terdiri dari:



  • bagian parietal --> tulang dahi
  • bagian temporal --> tulang samping kiri kanan kepala dekat telinga
  • bagian occipitas --> daerah belakang daritengkorak
  • bagian spenoid --> berdekatan dengan tulang rongga mata, seperti tulang baji
  • bagian ethmoid --> tulang yang menyususn rongga hidung

Tulang Tengkorak Tulang-tulang tengkorak merupakan tulang yang menyusun kerangka kepala. Tulang tengkorak tersusun atas 8 buah tulang yang menyusun kepala dan empat belas tulang yang menyusun bagian wajah. tulang tengkorak bagian kepala merupakan bingkai pelindung dari otak. Sendi yang terdapat diantara tulang-tulang tengkorak merupakan sendi mati yang disebut sutura.

2, Tulang tengkorak bagian wajah terdiri dari:


  • rahang bawah --> menempel pada tulang tengkorak bagian temporal. hal tersebut merupakan satu-satunya hubungan antar tulang dengan gerakan yang lebih bebas
  • Rahang bawah --> menyusun sebagian dari hidung, dan langit-langit
  • palatinum (tulang langit-langit) --> menyusun sebagian dari rongga hidung dan bagian atas dari atap rongga mulut
  • zigomatik --> tulang pipi
  • tulang hidung
  • Tulang lakrimal --> sekat tulang hidung.

3. Tulang dada

Tulang dada termasuk tulang pipih, terletak di bagian tengah dada. pada sisi kiri dan kanan tulang dada terdapat tempat lekat dari rusuk. bersama-sama dengan rusuk, tulang dada memberikan perlindungan pada jantung, paru-paru dan pembuluh darah besar dari kerusakan
Tulang dada tersusun atas 3 tulang yaitu:



  • tulang hulu / manubrium. terletak di bagian atas dari tulang dada, tempat melekatknya tulang rusuk yang pertama dan kedua
  • Tulang badan / gladiolus, terletak dibagian tengah, tempat melekatnya tulang rusuk ke tiga sampai ke tujuh, gabungan tulang rusuk ke delapan sampai sepuluh.
  • Tulang taju pedang / xiphoid process, terletak di bagian bawah dari tulang dada. Tulang ini terbentuk dari tulang rawan.

4. Tulang rusuk

Tulang rusuk berbentuk tipis, pipih dan melengkung. bersama-sama dengan tulang dada membentuk rongga dada untuk melindungi jantung dan paru-paru. Tulang rusuk dibedakan atas tiga bagian yaitu:


  • Tulang rusuk sejati berjumlah tujuh pasang. Tulang-tulang rusuk ini pada bagian belakang berhubungan dengan ruas-ruas tulang belakang sedangkan ujung depannya berhubungan dengan tulang dada dengan perantaraan tulang rawan
  • Tulang rusuk palsu berjumlah 3 pasang. Tulang rusuk ini memiliki ukuran lebih pendek dibandingkan tulang rusuk sejati. Pada bagian belakang berhubungan dengan ruas-ruas tulang belakang sedangkan ketiga ujung tulang bagian depan disatukan oleh tulang rawan yang melekatkannya pada satu titik di tulang dada
  • Rusuk melayang berjumlah 2 pasang. Tulang rusuk ini pada ujung belakang berhubungan dengan ruas-ruas tulang belakang, sedangkan ujung depannya bebas.

Tulang rusuk memiliki beberapa fungsi diantaranya:

a). melindungi jantung dan paru-paru dari goncangan.

b). melindungi lambung, limpa dan ginjal, dan

c). membantu pernapasan.

5. Ruas-ruas tulang belakang

Ruas-ruas tulang belakang disebut juga tulang belakang disusun oleh 33 buah tulang dengan bentuk tidak beraturan. ke 33 buah tulang tersebut terbagai atas 5 bagian yaitu:


  • tujuh ruas pertama disebut tulang leher. ruas pertama dari tulang leher disebut tulang atlas, dan ruas kedua berupa tulang pemutar atau poros. bentuk dari tulang atlas memungkinkan kepala untuk melakukan gerakan.
  • Dua belas ruas berikutnya membentuk tulang punggung. Ruas-ruas tulang punggung pada bagian kiri dan kanannya merupakan tempat melekatnya tulang rusuk.
  • Lima ruas berikutnya merupakan tulang pinggang. Ukuran tulang pinggang lebih besar dibandingkan tulang punggung. Ruas-ruas tulang pinggang menahan sebagian besar berat tubuh dan banyak melekat otot-otot.
  • Lima ruas tulang kelangkangan (sacrum), yang menyatu, berbentuk segitiga terletak dibawah ruas-ruas tulang pinggang.
  • bagian bawah dari ruas-ruas tulang belakang disebut tulang ekor (coccyx), tersusun atas 3 sampai dengan 5 ruas tulang belakang yang menyatu.

Ruas-ruas tulang belakang berfungsi untuk menegakkan badan dan menjaga keseimbangan. menyokong kepala dan tangan, dan tempat melekatnya otot, rusuk dan beberapa organ.



B. Skeleton apendikular
Tersusun atas tulang tulang yang merupakan tambahan dari skeleton axial. Skeleton axial terdiri dari :



  • Anggota gerak atas
  • anggota gerak bawah
  • gelang bahu
  • gelang panggung
  • bagian akhir dari ruas-ruas tulang belakang seperti sakrum dan tulang coccyx


  1. Tulang anggota gerak atas (extremitas superior)

Tulang penyusun anggota gerak atas tersusun atas:


  1. Humerus / tulang lengan atas. Termasuk kelompok tulang panjang /pipa, ujung atasnya besar, halus, dan dikelilingi oleh tulang belikat. pada bagian bawah memiliki dua lekukan merupakan tempat melekatnya tulang radius dan ulna
  2. Radius dan ulna / pengumpil dan hasta. Tulang ulna berukuran lebih besar dibandingkan radius, dan melekat dengan kuat di humerus. Tulang radius memiliki kontribusi yang besar untuk gerakan lengan bawah dibandingkan ulna.
  3. karpal / pergelangan tangan. tersusun atas 8 buah tulang yang saling dihubungkan oleh ligamen
  4. metakarpal / telapak tangan. Tersusun atas lima buah tangan. Pada bagian atas berhubungan dengan tulang pergelangan tangan, sedangkan bagian bawah berhubungan dengan tulang-tulang jari (palanges)
  5. Palanges (tulang jari-jari). tersusun atas 14 buah tulang. Setiap jari tersusun atas tiga buah tulang, kecuali ibu jari yang hanya tersusun atas 2 buah tulang.


  1. Tulang anggota gerak bawah (ekstremitas inferior)

Tulang anggota gerak bawah disusun oleh tulang:


  1. Femur / tulang paha. Termasuk kelompok tulang panjang, terletak mulai dari gelang panggul sampai ke lutut.
  2. Tibia dan fibula / tulang kering dan tulang betis. Bagian pangkal berhubungan dengan lutut bagian ujung berhubungan dengan pergelangan kaki. Ukuran tulang kering lebih besar dinandingkan tulang betis karena berfungsi untuk menahan beban atau berat tubuh. Tulang betis merupakan tempat melekatnya beberapa otot
  3. Patela / tempurung lutut. terletak antara femur dengan tibia, bentuk segitiga. patela berfungsi melindungi sendi lutut, dan memberikan kekuatan pada tendon yang membentuk lutut
  4. Tarsal / Tulang pergelangan kaki. Termasuk tulang pendek, dan tersusun atas 8 tulang dengan salah satunya adalah tulang tumit.
  5. Metatarsal / Tulang telapak kaki. Tersusun atas 5 buah tulang yang tersesun mendatar.
  6. Palanges / tulang jari-jari tangan. Setiap jari tersusun atas 3 tulang kecuali tulang ibu jari atas 14 tulang.

  1. Tulang gelang bahu (klavikula dan scapula / belikat dan selangka)

Tulang selangka berbentuk seperti huruf "S", berhubungan dengan tulang lengan atas (humerus) untuk membentuk persendian yang menghasilkan gerakan lebih bebas, ujung yang satu berhubungan dengan tulang dada sedangkan ujung lainnya berhubungan dengan tulang belikat.

Tulang belikat (skapula) berukuran besar, bentuk segitiga dan pipih, terletak pada bagian belakang dari tulang rusuk. Fungsi utama dari gelang bahu adalah tempat melekatnya sejumlah otot yang memungkinkan terjadinya gerakan pada sendi.

  1. Gelang panggul

Tulang gelang panggul terdiri atas dua buah tulang pinggung. Pada anak anak tulang pinggul ini terpisah terdiri atas tiga buah tulang yaitu illium (bagian atas), tulang ischiun (bagian bawah) dan tulang pubis (bagian tengah). Dibagian belakang dari gelang panggul terdapat tulang sakrum yang merupakan bagian dari ruas-ruas tulang belakang. Pada bagian depan terdapat simfisis pubis merupakan jaringan ikat yang menghubungkan kedua tulang pubis. Fungsi gelang panggung terutama untuk mendukung berat badan bersama-sama dengan ruas tulang belakang. melindungi dan mendukung organ-organ bawah, seperti kandung kemih, organ reproduksi, dan sebagai tempat tumbuh kembangnya janin.

Secara umum fungsi sistem rangka adalah membentuk kerangka yang kaku dengan jaringan-jaringan dan organ-organ yang melekat padanya. Sistem rangka melindungi organ-organ vital seperti otak yang dilindungi oleh tulang tengkorak, paru-paru dan jantung dilindungi oleh tulang dada dan tulang rusuk. Gerakan tubuh terbentuk dari kerjasama antara sistem rangka dengan otot, oleh sebab itu keduanya sering dikelompokkan menjadi satu nama yaitu sistem musculo-skeletal. rangka merupakan tempat melekatnya otot melalui perantaraan tendon. Antara tulang yang satu dengan tulang yang lain dikaitkan dengan perantaraan ligamen

.http://forum.kompas.com/sains/47096-sistem-rangka-manusia.html

Senin, 26 November 2012

ANABOLISME


Anabolisme adalah proses sintesis molekul kompleks dari senyawa-senyawa kimia yang sederhana secara bertahap. Proses ini membutuhkan energi dari luar. Energi yang digunakan dalam reaksi ini dapat berupa energi cahaya ataupun energi kimia. Energi tersebut, selanjutnya digunakan untuk mengikat senyawa-senyawa sederhana tersebut menjadi senyawa yang lebih kompleks. Jadi, dalam proses ini energi yang diperlukan tersebut tidak hilang, tetapi tersimpan dalam bentuk ikatan-ikatan kimia pada senyawa kompleks yang terbentuk.

Selain dua macam energi diatas, reaksi anabolisme juga menggunakan energi dari hasil reaksi katabolisme, yang berupa ATP. Agar asam amino dapat disusun menjadi protein, asam amino tersebut harus diaktifkan terlebih dahulu. Energi untuk aktivasi asam amino tersebut berasal dari ATP. Agar molekul glukosa dapat disusun dalam pati atau selulosa, maka molekul itu juga harus diaktifkan terlebih dahulu, dan energi yang diperlukan juga didapat dari ATP. Proses sintesis lemak juga memerlukan ATP.

Anabolisme meliputi tiga tahapan dasar. Pertama, produksi prekursor seperti asam amino, monosakarida, dan nukleotida. Kedua, pengaktivasian senyawa-senyawa tersebut menjadi bentuk reaktif menggunakan energi dari ATP. Ketiga, penggabungan prekursor tersebut menjadi molekul kompleks, seperti protein, polisakarida, lemak, dan asam nukleat. Anabolisme yang menggunakan energi cahaya dikenal dengan fotosintesis, sedangkan anabolisme yang menggunakan energi kimia dikenal dengan kemosintesis.

Senyawa kompleks yang disintesis organisme tersebut adalah senyawa organik atau senyawa hidrokarbon. Autotrof, seperti tumbuhan, dapat membentuk molekul organik kompleks di sel seperti polisakarida dan protein dari molekul sederhana seperti karbon dioksida dan air. Di lain pihak, heterotrof, seperti manusia dan hewan, tidak dapat menyusun senyawa organik sendiri. Jika organisme yang menyintesis senyawa organik menggunakan energi cahaya disebut fotoautotrof, sementara itu organisme yang menyintesis senyawa organik menggunakan energi kimia disebut kemoautotrof.

Reaksi anabolisme menghasilkan senyawa-senyawa yang sangat dibutuhkan oleh banyak organisme, baik organisme produsen (tumbuhan) maupun organisme konsumen (hewan, manusia). Beberapa contoh hasil anabolisme adalah glikogen, lemak, dan protein berguna sebagai bahan bakar cadangan untuk katabolisme, serta molekul protein, protein-karbohidrat, dan protein lipid yang merupakan komponen struktural yang esensial dari organisme, baik ekstrasel maupun intrasel

FISIOLOGI TUMBUHAN

Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.


1. Fotosintesis
Arti fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).

Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.

Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.

Untuk membuktikan bahwa dalam fotosintesis diperlukan energi cahaya matahari, dapat dilakukan percobaan Ingenhousz.

2. Pigmen Fotosintesis
Fotosintesis hanya berlangsung pada sel yang memiliki pigmen fotosintetik. Di dalam daun terdapat jaringan pagar dan jaringan bunga karang, pada keduanya mengandung kloroplast yang mengandung klorofil / pigmen hijau yang merupakan salah satu pigmen fotosintetik yang mampu menyerap energi cahaya matahari.

Dilihat dari strukturnya, kloroplas terdiri atas membran ganda yang melingkupi ruangan yang berisi cairan yang disebut stroma. Membran tersebut membentak suatu sistem membran tilakoid yang berwujud sebagai suatu bangunan yang disebut kantung tilakoid. Kantung-kantung tilakoid tersebut dapat berlapis-lapis dan membentak apa yang disebut grana Klorofil terdapat pada membran tilakoid dan pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid, sedang pembentukan glukosa sebagai produk akhir fotosintetis berlangsung di stroma.

Faktor-faktor yang berpengaruh terhadap pembentukan klorofil antara lain :
1. Gen :
bila gen untuk klorofil tidak ada maka tanaman tidak akan memiliki
klorofil.
2. Cahaya :
beberapa tanaman dalam pembentukan klorofil memerlukan cahaya,
tanaman lain tidak memerlukan cahaya.
3. Unsur N. Mg, Fe :
merupakan unsur-unsur pembentuk dan katalis dalam sintesis klorofil.
4. Air :
bila kekurangan air akan terjadi desintegrasi klorofil.

Pada tabun 1937 : Robin Hill mengemukakan bahwa cahaya matahari yang ditangkap oleh klorofil digunakan untak memecahkan air menjadi hidrogen dan oksigen. Peristiwa ini disebut fotolisis (reaksi terang).
H2 yang terlepas akan diikat oleh NADP dan terbentuklah NADPH2, sedang O2 tetap dalam keadaan bebas. Menurut Blackman (1905) akan terjadi penyusutan CO2 oleh H2 yang dibawa oleh NADP tanpa menggunakan cahaya. Peristiwa ini disebut reaksi gelap NADPH2 akan bereaksi dengan CO2 dalam bentuk H+ menjadi CH20.

CO2 + 2 NADPH2 + O2 ————> 2 NADP + H2 + CO+ O + H2 + O2

Ringkasnya :
Reaksi terang :2 H20 ——> 2 NADPH2 + O2
Reaksi gelap :CO2 + 2 NADPH2 + O2——>NADP + H2 + CO + O + H2 +O2
atau
2 H2O + CO2 ——> CH2O + O2
atau
12 H2O + 6 CO2 ——> C6H12O6 + 6 O2

3. Kemosintesis
Tidak semua tumbuhan dapat melakukan asimilasi C menggunakan cahaya sebagai sumber energi. Beberapa macam bakteri yang tidak mempunyai klorofil dapat mengadakan asimilasi C dengan menggunakan energi yang berasal dan reaksi-reaksi kimia, misalnya bakteri sulfur, bakteri nitrat, bakteri nitrit, bakteri besi dan lain-lain. Bakteri-bakteri tersebut memperoleh energi dari hasil oksidasi senyawa-senyawa tertentu.

Bakteri besi memperoleh energi kimia dengan cara oksidasi Fe2+ (ferro) menjadi Fe3+ (ferri).

Bakteri Nitrosomonas dan Nitrosococcus memperoleh energi dengan cara mengoksidasi NH3, tepatnya Amonium Karbonat menjadi asam nitrit dengan reaksi:
Nitrosomonas
(NH4)2CO3 + 3 O2 ——————————> 2 HNO2 + CO2 + 3 H20 + Energi
Nitrosococcus

1. Sintesis Lemak
Lemak dapat disintesis dari karbohidrat dan protein, karena dalam metabolisme, ketiga zat tersebut bertemu di dalarn daur Krebs. Sebagian besar pertemuannya berlangsung melalui pintu gerbang utama siklus (daur) Krebs, yaitu Asetil Ko-enzim A. Akibatnya ketiga macam senyawa tadi dapat saling mengisi sebagai bahan pembentuk semua zat tersebut. Lemak dapat dibentuk dari protein dan karbohidrat, karbohidrat dapat dibentuk dari lemak dan protein dan seterusnya.

4.1. Sintesis Lemak dari Karbohidrat :
Glukosa diurai menjadi piruvat ———> gliserol.
Glukosa diubah ———> gula fosfat ———> asetilKo-A ———> asam lemak.
Gliserol + asam lemak ———> lemak.
4.2. Sintesis Lemak dari Protein:
Protein ————————> Asam Amino
protease

Sebelum terbentuk lemak asam amino mengalami deaminasi lebih dabulu, setelah itu memasuki daur Krebs. Banyak jenis asam amino yang langsung ke asam piravat ———> Asetil Ko-A.

Asam amino Serin, Alanin, Valin, Leusin, Isoleusin dapat terurai menjadi Asam pirovat, selanjutnya asam piruvat ——> gliserol ——> fosfogliseroldehid Fosfogliseraldehid dengan asam lemak akan mengalami esterifkasi membentuk lemak.

Lemak berperan sebagai sumber tenaga (kalori) cadangan. Nilai kalorinya lebih tinggi daripada karbohidrat. 1 gram lemak menghasilkan 9,3 kalori, sedangkan 1 gram karbohidrat hanya menghasilkan 4,1 kalori saja.

5. Sintesis Protein
Sintesis protein yang berlangsung di dalam sel, melibatkan DNA, RNA dan Ribosom. Penggabungan molekul-molekul asam amino dalam jumlah besar akan membentuk molekul polipeptida. Pada dasarnya protein adalah suatu polipeptida.

Setiap sel dari organisme mampu untuk mensintesis protein-protein tertentu yang sesuai dengan keperluannya. Sintesis protein dalam sel dapat terjadi karena pada inti sel terdapat suatu zat (substansi) yang berperan penting sebagai "pengatur sintesis protein". Substansi-substansi tersebut adalah DNA dan RNA.

Rabu, 21 November 2012

KATABOLISME

Katabolisme adalah salah satu bagian dari metabolisme yang terjadi pada mahkluk hidup yang bersifat eksorgonik , melepaskan energi
Katabolisme ini dilakukan oleh mahkluk hidup agar ia bisa mendapatkan energi sehingga bisa beraktivitas.
  • Katabolisme adalah reaksi pemecahan / pembongkaran senyawa kimia kompleks yang mengandung energi tinggi menjadi senyawa sederhana yang mengandung energi lebih rendah.
  • Energi yang ada ditubuh mahkluk hidup itu berupa energi kimia dijadikan energi kinetik / energi gerak
Tujuan utama katabolisme adalah untuk membebaskan energi yang terkandung di dalam senyawa Complex sebagai senyawa sumber yang diurai.
  • Bila pembongkaran zat dalam lingkungan cukup oksigen (aerob) : Respirasi
  • Bila pembongkaran zat dalam lingkungan tanpa oksigen (anaerob) : Fermentasi.

  1. Contoh Respirasi : C6H12O6 (glukosa)+ O2 ——> 6CO2 + 6H2O + 688KKal.
  2. Contoh Fermentasi :C6H1206(glukosa) ——> 2C2H5OH(etanol) + 2CO2 + Energi.
Kita bahas diawal ini Respirasi baru Fermentasi OK

RESPIRASI SEL

  • Respirasi yaitu suatu proses pembebasan energi yang tersimpan dalam zat sumber energi melalui proses kimia dengan menggunakan oksigen.
  • Dari respirasi akan dihasilkan energi kimia ATP untuk kegiatan kehidupan, seperti osmosis , sintesis (anabolisme), aktivitas gerak, pertumbuhan.

Contoh:
Respirasi pada Glukosa, reaksi sederhananya:
C6H1206 + 6 02 ———————————> 6 H2O + 6 CO2 + Energi
(gluLosa)
Reaksi pembongkaran glukosa menjadi H20 + CO2 + Energi,
melalui empat tahap :

  1. Glikolisis.
  2. Dekarboksilasi Oksidatif
  3. Daur Krebs.
  4. Sistem Transpor Elektron respirasi.

SECARA SEDERHANA SKEMANYA SEBAGAI BERIKUT . OK





1. Glikolisis : awal proses Respirasi

  • Bahan : Glukosa (C=6)
  • Produk : 2.2.2 ( 2Asam Piruvat (C3),2NADH,2ATP)
  • Tempat : Sitoplasma
  • Suasana : Anaerob
  • Tahapan ada 10 tahapan


Peristiwa perubahan :

  • Glukosa jadi Asam piruvat.
  • Short Cut : GiGFiFi PGAL diberi 3 pil PGA malah Pusing - Pingsan
Artinya Urutan Prosesnya
  • Glukosa - Glulosa 6fosfat - Fruktosa 6 difosfat- Fruktosa 1,6 difosfat - 3 fosfogliseraldehid (PGAL) - Phospo Gliserat Acid 1.3 - Phospo Gliserat Acid 3 - Phospo Gliserat Acid 2 -Phospo Eno Piruvat - Asam Piruvat
  • OK

Hasil lebgkapnya Glikolisis :

  1. 2 Asam Piruvat
  2. 2 molekul NADH yang berfungsi sebagai koenzim sumber elektron berenergi tinggi.
  3. 2 molekul ATP
Hasil itu oleh sel didapatkan untuk setiap penguraian 1 molekul glukosa.

2. Dekarbosilasi Oksidatif ( prodes antara siklus Krebs )

Proses Pembongakaran Asam piruvat menjadi Asetil KoA untuk menjembatani proses Siklus Krebs 
  • Bahan : Asam Piruvat (C=3)
  • Produk : 2.2.2 (2 Asetil KoA (C=2), 2 CO2(C=1) , 2 NADH)
  • Tempat : Inter Membran luar mitokondria
  • Proses : Asam Piruvat(3C) dirubah menjadi Asetil KoA (2C) dan CO2 (1 C)
  • Setiap pembongkaran senyawa menhasilkan CO2 dapat dipastikan juga menhasilkan NADH)

3. Daur Krebs (daur trikarboksilat):
Daur Krebs (daur trikarboksilat) atau daur asam sitrat merupakan pembongkaran asam piruvat secara aerob menjadi CO2 serta energi kimia
  • Bahan : Asetil KoA
  • Produk : 6,4,2,2 ( 6NADH,4CO2,2FADH ,2ATP )
  • Tempat : Matriks Mitokondria
  • Langkah : OA-S-IS-KG-SCo-S-F-M

4. Rantai Transportasi Elektron Respiratori:
  • Bahan : 10 NADH ( 2 GLikolisis,2 DO,6 SK)
  • 6 Oksigen
  • Produk : 34 ATP dab H2O
  • Tempat : Cristae ( membran dalam Mitocondria )
  • Suasana : Aerob ( O2 sebagai Akseptor ion H+ )
  • Enzim : Sitokrom

Ketiga proses respirasi yang penting tersebut dapat diringkas sebagai berikut:

PROSES AKSEPTOR ATP

1. Glikolisis:
  • Glukosa ——> 2 asam piruvat 2 NADH 2 ATP
2. Dejarboksilasi Oksidatif
  • 2 asetil piruvat ——> 2 asetil KoA + 2 C02 2 NADH 2 ATP
3. Siklus Krebs
  • 2 asetil KoA ——> 6 NADH + 4CO2 + 2 FADH + 2 ATP
4. Rantai trsnspor elektron respirator:
  • 10 NADH + 502 ——> 10 NAD+ + 10 H20 30 ATP
  • 2 FADH2 + O2 ——> 2 FAD + 2 H20 4 ATP

Jadi Total Yang dihasilkan ada 38 ATP dari Glikolisis 2 ATP , SK 2ATP , STE 34 ATP) OK



Kesimpulan :
  • Pembongkaran 1 mol glukosa (C6H1206) + O2 ——> 6 H20 + 6 CO2 menghasilkan energi sebanyak 38 ATP
  • Karena Peristiwa Glikolisis terjadi di sitoplasma , maka NAD yang membawa ion H+ ketika masuk ke mitocondria untuk diberikan ke akseptor Oksigen memrlukan energi 2 ATP maka ATP keseluruhan hanya tinggal 36 ATPhttp://biologigonz.blogspot.com/2009/09/anabolisme-katabolisme.html

Senin, 12 November 2012

FOTOSINTESIS

Fotosintesis adalah suatu proses biokimiapembentukan zat makanan berbentuk karbohidrat yang dilakukan oleh tumbuhan, terutama tumbuhan yang mengandung zat hijau daun, yaitu klorofil. Selain yang mengandung zat hijau daun, ada juga makhluk hidup yang berfotosintesis yaitu alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbon dioksida, dan air serta dibutuhkan bantuan energi cahaya matahari.
Organisme fotosintesis disebut fotoautotrof karena mereka dapat membuat makanannya sendiri. Pada tanamaan, alga, dan cyanobacteria, fotosintesis memanfaatkan karbondioksida dan air, menghasilkan oksigen sebagai produk buangannya. Fotosintesis sangat penting bagi semua kehidupan aerobik di Bumi. Selain untuk menjaga tingkat normal oksigen di atmosfer, fotosintesis juga merupakan sumber energi bagi hampir semua kehidupan di Bumi, baik secara langsung (melalui produksi primer) maupun tidak langsung (sebagai sumber utama energi dalam makanan mereka), kecuali organisme kemoautotrof yang hidup di bebatuan atau di lubang angin hidrotermal di laut yang dalam. Tingkat penyerapan energi oleh fotosintesis sangat tinggi, sekitar 100 terawatt, yang kira-kira enam kali lebih besar daripada konsumsi energi peradaban manusia. Selain energi, fotosintesis juga menajdi sumber karbon bagi semua senyawa organik dalam tubuh organisme. Fotosintesis mengubah sekitar 100–115  petagram karbon menjadi biomassa setiap tahunnya.

Perangkat fotosintesis

Pigmen

Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik. Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.

Kloroplas

Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang. Di dalam kloroplas terdapatpigmen klorofil yang berperan dalam proses fotosintesis. Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma. Stroma ini dibungkus oleh dua lapisan membran. Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli. Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum). Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid. Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid. Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun tembaga (Cu). Pigmen fotosintetik terdapat padamembran tilakoid. Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma. Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.

Fotosistem

Fotosistem adalah suatu unit yang mampu menangkap energi cahaya Matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron. Di dalam kloroplas terdapat beberapa macam klorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga.Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.

Fotosintesis pada tumbuhan

Tumbuhan bersifat autotrof. Autotrof artinya dapat mensintesis makanan langsung dari senyawa anorganik. Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula danoksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Berikut ini adalah persamaan reaksi fotosintesis yang menghasilkan glukosa:
6H2O + 6CO2 + cahaya ? C6H12O6 (glukosa) + 6O2
Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas. Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia. Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas.klorofil menyerap cahaya yang akan digunakan dalam fotosintesis. Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar Matahari ataupun penguapan air yang berlebihan.

Fotosintesis pada alga dan bakteri

Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel. Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama. Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi.Semua alga menghasilkan oksigen dan kebanyakan bersifat autotrof. Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain.

Proses Fotosintesis

Tumbuhan membutuhkan sinar matahari, air, dan udara untuk membuat makanannya sendiri. Setiap hari, zat hijau daun pada daun tanaman menyerap cahaya matahari. Tumbuhan memanfaatkan cahaya matahari menjadi karbon dioksida dari udara, dan air dari tanah menjadi makanan yang mengandung gula. Tumbuhan lalu mengeluarkan oksigen sebagai hasil yang tidak terpakai, walaupun sebagian digunakan untuk bernapas. Untuk lebih jelasnya lihat gambar berikut.

http://www.terpopuler.net/pengertian-dan-proses-fotosintesis

Cara Pemeliharaan Adenium

Cara Pemeliharaan Adenium



Adenium merupakan tanaman sukulen yang berumur panjang. Tanaman ini berasal dari daerah tropis, meski ditemukan di gurun pasir. Terlebih lagi telah terjadi domestikasi sehingga hanya anakan yang tahan terhadap air-lah yang mampu bertahan dalam kondisi yang basah. Anakan tersebut lebih tidak senang terhadap kekeringan daripada yang ada di alam. Adenium akan mati saat terjadi kombinasi dari keadaan dingin dan basah ataupun dengan terlalu banyak menyiram pada media yang lengket dan drainase-nya tidak bagus..
Namun keadaan dingin ini (di bawah 10C) tidak dijumpai di semua wilayah Indonesia (kecuali di pegunungan), sehingga tanaman adenium ini dapat lebih cepat tumbuh karena mendapat panas yang cukup dengan tak lupa air yang cukup.

Adenium membutuhkan media yang cukup mengandung udara dan mampu menahan kelembaban agar pertumbuhannya maksimal. Namun pemilihan media yang tepat merupakan kebijakan dari masing-masing pemelihara yang disesuaikan dengan penyiraman yang dilakukan. Jika penyiraman sering, maka diperlukan media yang tidak mengikat air, tapi jika jarang dilakukan penyiraman, maka media yang digunakan adalah yang cukup mengikat air.
Cara pemupukan juga perlu diperhatikan apakah akan secara siram (dilarutkan dalam air siraman) atau dengan mencampur ke media atau diletakkan di atas media, atau kombinasi dari cara-cara tersebut.
Campuran media yang sering digunakan adalah: Cocopeat (serbuk sabut kelapa), cocochunk (cacahan sabut kelapa), pasir kasar, sekam bakar, sekam, pupuk kandang, pupuk kompos, kerikil, daun kering, dan lain-lain. Beberapa bahan di atas dicampur dengan perbandingan menjadi media yang disesuaikan dengan kebutuhan penyerapan air dan pemupukan menurut kebutuhan masing-masing grower .
Seringkali di dasar pot diberi kerikil, pecahan batu bata, pecahan genteng, ataupun styrofoam. Ada pula grower yang tak menambahkan dasaran di bagian bawah pot melainkan menggunakan kain jala untuk mencegah media keluar dari lubang drainase.
kembali ke atas
Segala macam pot dapat dipakai. Kita harus hati-hati dengan pot gerabah ataupun keramik, karena dapat pecah saat bonggol membesar dan tidak muat dalam pot tersebut. Sebaiknya gunakan pot gerabah atau keramik yang berdinding tebal sehingga tidak mudah pecah. Pot plastik juga baik karena ringan dan tidak mudah pecah.
Lubang drainase haruslah besar dan banyak untuk menjamin tidak adanya penyumbatan air yang berakibat fatal. Di bagian bawah biasanya diberi kain jala untuk mencegah tergerusnya media ke luar dari pot.
Besar pot hendaknya disesuaikan dengan masa pertumbuhan dari adenium yang ditanam. Pot tidak boleh terlalu besar yang dapat mengakibatkan percabangan akar yang terlalu banyak.
Saat akar/bonggol adenium sudah tidak muat di suatu pot, maka saatnya untuk memindahkan ke pot yang lebih besar. Pemindahan ini dapat dilakukan dengan membersihkan media yang lama dan diganti yang baru, atau jika media lama masih laik maka dapat pula disisakan dan di sela-sela-nya diisi dengan media yang baru. Saat yang tepat untuk mengganti pot adalah ketika adenium sedang dalam masa tumbuh aktif. Harus hati-hati dengan kemungkinan bonggol terlukai sat transplantasi. Bonggol yang terluka dapat mengakibatkan busuk saat dilakukan penyiraman. Jika bonggol ternyata terluka, jangan sirami selama sekitar seminggu agar luka-nya sembuh terlebih dahulu.
kembali ke atas
Seberapa banyak tanaman adenium disiram tergantung pada masa tumbuh dari adenium tersebut. Jangan biarkan media sampai kering saat adenium sedang tumbuh (terlihat ada bakal daun yang siap tumbuh membesar) karena akan menghambat pertumbuhannya. Bahkan adenium yang sedang tumbuh dapat disiram setiap hari asalkan media dan drainasenya bagus. Lain halnya saat pertumbuhan berhenti, yaitu saat tidak ada bakal daun baru yang ditandai dengan warna daun yang serupa (misalnya: daun berwarna hijau tua semua, tidak ada pucuk yang berwarna hijau muda). Pada saat ini, media harus dibiarkan mengering sebelum dilakukan penyiraman berikutnya. Pengairan ini hanya berfungsi agar bonggol adenium tidak berkerut.
Ada berbagai aspek yang mempengaruhi cepatnya media mengering, seperti kebutuhan tanaman akan air, besarnya wadah dan jenis media yang digunakan. Tanaman yang masih muda membutuhkan lebih banyak air daripada yang sudah berumur.
Saat memindah tanaman ke media baru adalah saat yang kritis, karena seringkali ada cacat pada akar yang tidak kita ketahui. Cacat tersebut dapat mengakibatkan busuknya tanaman pada saat terkena air yang cukup banyak. Ketika terjadi pembusukan yang ditandai dengan daun yang menguning secara tidak normal, maka harus segera dilakukan penyelamatan pada tanaman tersebut. Caranya dapat dilihat di penyelamatan bonggol yang membusuk.
Cara melakukan penyiraman adalah dengan menyemprot ataupun mengucurkannya langsung ke media. Jika dipilih cara semprot, maka harus hati-hati karena air seringkali tidak cukup membasahi media. Lakukan penyiraman sampai ada air yang mengalir keluar dari dasar pot.
kembali ke atas
Suhu
Adenium menyukai suhu panas sedang seperti di daerah tropis(30 -35 C). Namun, semakin panas akan mengakibatkan bunga berumur pendek atau cepat layu. Suhu yang dingin pada malam hari (di bawah 10 C) akan meyebabkan adenium berhenti tumbuh.
Kelembaban
Kelembaban yang tinggi sangat disukai adenium. Saat musim hujan adalah saat di mana kelembaban tinggi, tapi adenium harus terlindungi dari curahan hujan agar sesuai dengan kebutuhan airnya. Untuk itu, rumah kaca akan sangat membantu. Namun jika budget terbatas, dapat pula digunakan plastik transparan untuk menutupi curahan hujan tanpa menghalangi sinar matahari yang masuk. Warna bunga akan kurang keluar jika keadaan lingkungan terlalu kering.
Sinar matahari
Sinar matahari penuh akan disukai oleh adenium terutama saat kelembaban tinggi. Namun hati-hati dengan bonggol yang terekspos terik matahari karena dapat terbakar. Seringkali para pembiak menggunakan koran bekas untuk membungkus bonggol yang berada di permukaan agar tidak tersengat terik matahari. Agar dapat berbunga dengan baik, kebanyakan adenium butuh paling tidak 4-5 jam cahaya matahari langsung.
Hujan
Sedikit terkena hujan akan baik bagi adenium. Saat hujan terlalu banyak menerpa, maka hujan harus dihalangi misalnya dengan atap plastik transparan. Hujan yang terlalu banyak, apalagi dikombinasi dengan suhu yang dingin dapat menyebabkan bonggol membusuk.
kembali ke atas
Kuncinya adalah sedikit dan sering. Jika adenium mendapat kondisi yang ideal, maka dia dapat tumbuh dengan sangat cepat. Namun jika terlalu banyak pupuk, maka adenium akan mati. Untuk yang tidak suka repot, cukup tambahkan pupuk untuk kaktus ataupun pupuk kandang yang merupakan slow release fertilizer, sehingga tak akan membunuh adenium. Pupuk kimia biasa seperti urea, KCL, TSP dapat pula digunakan karena harganya yang lebih murah, namun dosisnya harus sangat diperhatikan karena sangat mudah untuk menjadi kebanyakan. Biasanya pupuk kimia ini dilarutkan dalam air siraman agar penyerapan jadi merata dan optimal.
Jenis pupuk disesuaikan dengan kebutuhan. Kombinasi yang pas membutuhkan coba-coba disesuaikan dengan keadaan media, tingkat pertumbuhan, dan stressing (untuk pertumbuhan atau untuk pembungaan).
kembali ke atas
Adenium yang batangnya sudah terlalu panjang haruslah dipangkas. Tak perlu takut tanaman akan mati jika tanpa daun, karena adenium sudah punya cadangan makanan di bonggolnya untuk dapat bertahan hidup. Pemangkasan ini berguna untuk menyegarkan kembali agar tampak lebih indah. Agar adenium bercabang lebih dari satu, maka pemangkasan dilakukan saat adenium sedang tumbuh (bukan masa dorman). Jika waktunya salah, maka adenium tidak akan bercabang banyak, melainkan hanya tumbuh satu tunas saja. Setelah beberapa minggu tunas baru akan muncul, jadi haruslah sabar dan jangan terlalu banyak menyirami.
Pemangkasan ini juga berfungsi memacu pembungaan yang banyak. Biasanya, bunga yang banyak akan tumbuh setelah 3 bulan sebelumnya dipangkas dan diberi stressing pada pembungaan.
kembali ke atas

Rabu, 07 November 2012